P2C CONTROL SYSTEMS

Automotive Electronic Control Systems

Pure Power Control S.r.l

HPEGROUP HPE COXA P2C ENGINEERING MACHINING AND CONTROL SOLUTIONS METAL ADDITIVE SYSTEMS MOTORS

EDUCATION AND TRAINING

L'Aquila UniversityMaster Degree in Mathematics

Rome Tre UniversityPhD studies in Mathematics

 Alma Mater Studiorum – Bologna University – Department of Mathematics (2004)
 II level Master degree in "Applied Mathematics"

WORK EXPERIENCE

□ MARELLI POWERTRAIN

Model Based Software Developer

CNH Industrial

Software Integration Responsible

Arbos - Goldoni
 Software Development Manager and Project Manager
 Lamborghini
 Project Responsible
 BCS Tractor
 Software Development Manager and Project Manager
 Maserati

Verification and Validation Responsible

Pure Power Control (2019 –)
 Software Development Manager
 Technical Director (2023 -)

Advanced electronic control systems for innovative environmentally-friendly vehicles

High efficiency

Our business

- Effective control
- Cut down emissions

Designed for electric, hybrid electric and fuel-cell vehicles

Company trend

Business lines and customers

Hardware-in-the-Loop (**HIL**) Simulators

Driver-in-the-Loop (**DIL**) Simulators

Transmission Control Unit (TCU) for power

Electronic Control Units

Vehicle Control Module (VCM) for

Products

Software IPs

Vehicle and Powertrain Control

Internal Combustion Engine Control

P2C

SYSTEMS

Engineering services

Competences in automotive controls

- Model-Based System Engineering (MBSE)
- Model-Based Design (MBD)
- Modelling, analysis and simulation
- Software quality: MAB, MISRA, ASPICE level 2
- Functional Safety: ISO 26262, ISO 25119, IEC 61508
- Design and implementation of ASIL functions
- Development of AUTOSAR Software Components
- Networking: CAN, CAN FD, CANOpen, LIN, Flexray, Ethernet
- Diagnostic protocols: UDS, J1939, KWP2000
- Calibration protocols: (XCP,CCP,XETK)

Design and development

- Requirements management, traceability, impact analysis
- Software architecture design
- Advanced control design, MIL validation
- Firmware and coding: Cembedded, C++
- Automatic Code Generation from Model
- Integration and testing
 - SIL, HIL, lab and field experiments
 - Unit Test, Static and Dynamic Code Analysis
 - Software and Hardware Integration Test, ECU Qualification
 - Vehicle Integration and Qualification Test
 - Calibration on bench and vehide, Dataset Management

MBSE and MBD toolchain

Internal Combustion Engine Control

- Modeling and simulation of spark/compression ignition engines
- Engine torque and crankshaft speed control
- Air charge estimation and control
- Turbo-charging and EGR control
- Direct and indirect fuel injection control, A/F control
- After-treatment systems and tail-pipe emission control
- Axle shaft oscillation detection and optimal damping
- Actual engaged gear identification
- Internal combustion engine control calibration and testing
- Engine diagnosis and recovery
- OBDII diagnosis
- RDE (Real Driving Emission) data processing and analysis
- Tailpipe active noise cancellation and sound profiling
- Tools for engine calibration and testing data analysis

Transmission and Powertrain Control

- Modeling and simulation of
 - Automotive manual and AMT transmissions
 - Off-highway vehicle transmissions, working hydraulics and powertrains
 - Battery packs, supercaps, fuel-cells, power converters, inverters, electric motors
 - Automotive driving cycles and off-highway vehicle duty cycles
- Single-clutch and dual clutch automotive gearbox control
- Power-shuttle transmission control
- Power-shift transmission control
- Hydrostatic CVT and power-split control
- Parallel and series hybrid hydrostatic powertrain control
- Battery electric powertrain control
- Parallel and series hybrid electric powertrain control
- Power-split hybrid electric powertrain control
- Electric/hybrid electric powertrain thermal management

Vehicle Dynamics Control

- Modeling and simulation of
 - Chassis dynamics
 - Vehicle steering
 - Front-axle, rear-axle steering, 4-wheel and articulated steering
 - Wheel and brakes
 - On-road and off-road tire dynamics
- Longitudinal dynamics control
 - Drivability, cruise control, speed limiter
 - Traction and drag control
- Vertical dynamics control
 - Chassis and cabin suspension control
- Lateral dynamics control
 - All-wheel drive (AWD)
 - Torque vectoring (TV)
 - Skid steering

13

System Engineering of BEV/HEV/FCEVs

Analysis, benchmarking and optimization of advanced powertrains for BEV/HEV/FCEVs

Requirement formal specification

- Vehicle performance, driving/duty cycles
- Vehicle economy, fuel saving, range

Modeling, analysis and simulation

- Vehicle dynamics and BEV/HEV/FCEV powertrains
- Working hydraulics, ancillary systems
- Power flow, operating modes and efficiency analysis

Extended design space exploration and optimization

- Identification of best powertrain architecture
- Optimization of component sizing
- Energy management strategies

Vehicle Control Module (VCM) for BEV/HEV/FCEVs

Fuel Cell Electric Vehicle Simulator

Model-based System Validation of fuel-cell electric powertrains for

- Heavy duty tractors and material handling vehicles
- Heavy duty trucks and busses

DIL-HIL co-simulation for requirement validation

- Vehicle performance and vehicle dynamics
- Vehicle economy, energy management, range
- Execution of driving/duty cycles/critical maneuvers

Fuel-cell electric vehicle virtual validation by real-time cosimulation:

- FCEV Driver-in-the-Loop (DIL) simulator
- FCEV Hardware-in-the-Loop (HIL) simulator
 - a. Vehicle Control Module (VCM)
 - b. Fuel-cell electric powertrain with VCM

MIL Coverage : DC, CC, MCdC Sil Coverage :MCdC, Statmentes

Automotive Sw Guidelines : Misra, MAAB, ISO2622

Simulink model analysis in order to verify compliance of the model with defined modelling rules:

- Standard modelling quality rules (MAAB)
- Safety modelling rules (ISO26262)
- MISRA C:2012
- Custom Maserati modelling rules (not done)

			Model Advisor	Report - ACC_SL2outIC	E.mdl
Simulink version	n: 9.0			_	Model version: YY_03_05_00
System: ACC_S	L2outICE/AC	C_SL2outICE_ac/Sub	system/ACC_SL2outICE_	ac	Current run: 07-Sep-2021 16:34:57
					Model Advisor configuration: mdlAdv_Config_2017b.mat
Run Summary					
Pass	Fail	Warning	NotRun	Total	
9 55	00	\$ 53	0	108	
	Simulink versio System: ACC_S Run Summary Pass © 55	Simulink version: 9.0 System: ACC_SL2outICE/AC Run Summary Pass Fail © 55 © 0	Simulink version: 9.0 System: ACC_SL2outICE/ACC_SL2outICE_ac/Sub Run Summary Pass Fail Warning © 55 0 0 0.53	Model Advisor Simulink version: 9.0 System: ACC_SL2outICE/ACC_SL2outICE_ac/Subsystem/ACC_SL2outICE_ Run Summary Pass Fail Warning Not Run Ø 55 0	Model Advisor Report - ACC_SL2outICI Simulink version: 9.0 System: ACC_SL2outICE/ACC_SL2outICE_ac/Subsystem/ACC_SL2outICE_ac Run Summary Pass Fail Warning Not Run Total @ 55 @ 0 0.53 0 108

MIL Coverage Legend

Coverage Type	Description	Examples	
Decision	It analyzes elements that represent decision points in a model, such as a Switch block or Stateflow states. A test case achieves full coverage if all the path of the model are taken at least once during the simulation.	Decision coverage objectives of the switch block: Output is from 1° input Output is from 3° input Decision coverage of the switch is 100% (2/2) if: Input_sig ~=0 at least once Input_sig ==0 at least once	1 Input_sig 0
Condition	It analyzes blocks that output the logical combination of their inputs (for example, the Logical Operator block) and Stateflow transitions. A test case achieves full coverage when it causes each input to each instance of a logic block in the model and each condition on a transition to be true at least once during the simulation, and false at least once during the simulation.	Condition coverage objectives of the OR block: Input port 1 is TRUE Input port 1 is FALSE Input port 2 is TRUE Input port 2 is FALSE Input port 3 is TRUE Input port 3 is FALSE Condition coverage of the OR is 100% (6/6) if: Input_sig1 = T at least once Input_sig2 = T at least once Input_sig2 = T at least once Input_sig3 = T at least once 	Input_sig1 2 Input_sig2 3 Input_sig3
MC/DC (Modified Condition/Decision coverage)	It analyzes blocks that output the logical combination of their inputs and Stateflow transitions to determine the extent to which the test case tests the independence of logical block inputs and transition conditions. A test case achieves full coverage for a block when a change in one input, independent of any other inputs, causes a change in the block output. A test case achieves full coverage for a Stateflow transition when there is at least one time when a change in the condition triggers the transition for each condition.	 MCDC coverage objectives of the OR block: Input port 1 value determines the value of output Input port 2 value determines the value of output Input port 3 value determines the value of output MCDC coverage of the OR is 100% (3/3) if: Input_sig1 varies between T and F at least once, while Input_sig2 = F, Input_sig3 = F Input_sig2 varies between T and F at least once, while Input_sig1 = F, Input_sig3 = F Input_sig3 varies between T and F at least once, while Input_sig1 = F, Input_sig3 = F Input_sig3 varies between T and F at least once, while Input_sig1 = F, Input_sig3 = F 	Input_sig1 2 Input_sig2 3 Input_sig3

Unit Test for Software Quality and Functional Safety

Code Metrics

Static Code Analisys

Run Time Check

Unreachable code		Check	Metric type	SQO1	SQ O2	SQ 03	SQ O4	SQ 05	SQ 06
Invalid C++ specific operations Correctness condition			Comment density of a file	20 (low er limit)	20 (l ower limit)	20 (l ower limit)	20 (l ower limit)	20 (l ower limit)	20 (l owe r lim it)
Division by zero (DB0)			Number of paths through a function	80	80	80	80	80	80
Uncaught exception			Number of goto statements	0	0	0	0	0	0
Function not returning value Illegally dereferenced pointer			Cyclomatic complexity	10	10	10	10	10	10
			Number of calls	5	5	5	5	5	5
Return value not initialized			Number of parameters per function	5	5	5	, 5	5	5
Non-initialized local variable	lvariable		Number of instructions per function	50	50	50	50	50	50
Non-initialized pointer Non-initialized variable		Code Metrics	Number of call levels in a function	4	4	4	4	4	4
			Number of return statements in a function	1	1	1	1	1	1
Null this-pointer calling method Incorrect object oriented programming Out of bounds array index (OOB) Overflow (OF)			Language scope An indicator of the cost of maintaining or changing functions. Calculated as follows: (N1+N2) / (n1+n2) • n1 — Number of different operators • N1 — Total number of operands • N2 — Total number of operands	4	4	4	4	4	4
Invalid shift operations			Number of recursions	0	0	0	0	0	0
User assertion	Number of direct recursions		0	0	0	0	0	0	

Applied Mathematics for Automotive Energy Management Strategies

Pontryagin's Maximum Principle

Fuel Consumption Minimization of PHEV

Function Optimization

Energy Comprehensive Optimization of BEV

In <u>conventional no-hybrid powertrains</u>, engine power profile must meet the requested tractive power to perform a mission.

In **hybrid electric powertrains**, energy accumulation and electric motor provide an extra degree of freedom that can be exploited for fuel consumption minimization.

Mission time horizon is partitioned into slots, based on vehicle speed monotonicity.

Problem: Let E_i denote the energy delivered by engine in slot *i*:

Find optimal engine energy distribution E_i .

Problem 2 Find minimum fuel consumption <u>engine torque profile</u> for each slot *i*

- For <u>constant engine speed</u> (**Prob 2.a**)
- For <u>constant engine acceleration</u> (**Prob 2.b**)

Problem 2

Find minimum fuel consumption <u>engine torque profile</u> for each slot *i*

- For constant engine speed (Prob 2.a)
- For constant engine acceleration (Prob 2.b)

Minimum fuel consumption engine torque profiles are explicitly determined by convex arguments or through Pontryagin's Maximum Principle necessary conditions and are expressed in terms of:

- engine speed ω
- mean-power demand $\frac{E}{\Delta T} = \overline{P}$

 $(\omega(t), \overline{P}) \rightarrow \tau^{opt}(t)$

Formalization of Prob. 2 as **optimal control** problem:

$$\begin{cases} \dot{x}(t) = \omega(t)\tau(t), t \in [t_i, t_{i+1}] \\ \tau(t) \in [\tau_{min}(\omega(t)), \tau_{max}(\omega(t))] \\ x(t_{i+1}) - x(t_i) = E_i \\ \min_{\tau} \frac{N}{4\pi} \int_{t_i}^{t_{i+1}} \omega q_E(\omega, \tau) ds \end{cases}$$

- \dot{x} engine power [W]
- ω engine speed [rad/s]
- τ engine torque [Nm]
- *E_i* engine energy in slot *i* [*J*]
- $q_E(\omega, \tau)$ engine cycle fuel mass per cylinder [g]
- $G(\omega, \tau) = \frac{N}{4\pi} \omega q_E(\omega, \tau)$ fuel consumption rate [g/s]

Problem 1 Find optimal <u>engine energy distribution</u> E_i on each slot. Solution to Problem 2 (a/b) provides the minimum fuel consumption value at the optimal torque profile for each i-th time slot:

 $(t_i, t_{i+1}, \omega_i(t), E_i) \longrightarrow FC_i^{opt}$

The Problem 1 can be explicated and solved in the form:

$$\begin{cases} \min_{E_i} \sum_{i=1}^{N} FC_i^{opt}(E_i) \\ g(E_1, E_2, \dots, E_N) < 0 \\ h(E_1, E_2, \dots, E_N) = 0 \end{cases}$$

Constraints include:

- Charge sustaining requirement for battery management (Constant SOC level)
- Engine, motor and battery physical constraints.

Energy Management Strategies

C O N T R O L S Y S T E M S

22

Energy Comprehensive Optimization of BEV

BEV architecture:

- The motion is provided by three motors (one front, two rear)
- Each motor is connected to battery via an inverter
- **Battery** is used to accumulate and supply electric energy to motors and other auxiliary loads
- A differential links the front motor with the front axle, composed of two half shafts connected to the front wheels
- Each **rear wheel** is connected, via a gear box, to one of the propeller shafts driven by the rear motors

Energy Management Strategies

C O N T R O L S Y S T E M S

22

Energy Comprehensive Optimization of BEV

BEV architecture:

- The motion is provided by three motors (one front, two rear)
- Each motor is connected to battery via an inverter
- **Battery** is used to accumulate and supply electric energy to motors and other auxiliary loads
- A differential links the front motor with the front axle, composed of two half shafts connected to the front wheels
- Each **rear wheel** is connected, via a gear box, to one of the propeller shafts driven by the rear motors

HPEGROU

27

Energy Management Strategies

Energy Comprehensive Optimization of BEV

Simplified vehicle model through dynamical system in (t, d, E) domain:

$\dot{E}(t) = -\frac{1}{\eta_B(t,v)} \left(\frac{1}{\eta_P(v)} v F_x(v) + P_{Aux} \right)$ $\dot{d}(t) = v(t)$ $E(0) = E_0$ d(0) = 0 $E(t) \in [E_{min}, E_0]$ $v(t) \in [v_{min}, v_{max}]$

• η_P : powertrain efficiency

• P₀: auxiliary load power

- d: travelled distance
- E: avilable energy in battery f(v): resistance forces
- *v*: vehicle speed
- η_B : battery efficiency

Chassis FrontAxle Mechanical Transmission WheelFrontLeft WheelFrontRight Battery nverte HighVoltageBattery MotorFront Wheel Rear Left MotorRearLeft MotorRearRight

HPFGROUP

Pure Power Control ©2008-2023

Energy Management Strategies

Energy Comprehensive Optimization of BEV

Maximum Range Speed Problem:

$\max_{v \in [v_{min}, v_{max}]} \int_0^{T_f} v(t) dt$ $\dot{E}(t) = -\frac{1}{\eta_B(t,v)} \left(\frac{1}{\eta_P(v)} v F_x(v) + P_{Aux} \right)$ $E(0) = E_0$ $E(T_f) = E_{min}$

For the **Pontryagin's Maximum Principle** the optimal vehicle speed profile is *constant* and the problem can be rewritten in terms of vehicle energy:

$$\min_{v \in [v_{min}, v_{max}]} VE(v) := \frac{1}{\eta_B(t, v)} \left(\frac{1}{\eta_P(v)} F_x(v) + \frac{P_{Aux}}{v} \right)$$

72C SYSTEMS

- Alma Mater Studiorum Università di Bologna
 Bachelor degree in Mathematics, 2013 2016
- Alma Mater Studiorum Università di Bologna

Master's degree in Mathematics (curriculum "generale e applicativo"), 2016–2019

- Marelli S.p.A.
 Traineeship and Thesis
- Pure Power Control s.r.l.
 - Applied Mathematician and Software Engineer, 2019–2022
 - Maserati S.p.A

V&V Specialist for BEV, ICE and MHEV vehicles, 2019 - 2022

Dataset Manager, 2022 – 2022

- Product Manager, 2023 today
 - Maserati S.p.A

Vehicle Dynamics Controls Product Manager, 2023 - today

Validation & Verification

P2C

Product Management

P2C SYSTEMS

- Main goals:
 - Ensure project milestones are respected
 - Reduce workload of the team
 - Ensure project budget is not exceeded
- How:
 - Produce correct requirements
 - Estimate cost of new activities
 - Coordinate with external stakeholders
 - Coordinate internal team by defining correct timing, strategy and priorities

Vehicle Structure – ECU* Topology

Types of connections:

- Ethernet (40Gbit/s)
- FlexRay (10Mbit/s)
- CAN FD (8 Mbit/s)
- CAN (1 Mbit/s)
- LIN (19 Kbit/s)

*Electronic Control Unit

Optimization of:

- Costs and materials
- Weight of the vehicle
- Performance
- Security

Cryptography and Cyber Security in Automotive

- Why:
 - Protect against crack of vehicle immobilizer
 - Protect ECUs from tampering
 - Secure company confidential data
 - Avoid usage of counterfeit parts

How:

- Physical secure of ECUs and wiring
- SW/HW partition of protected data
- Usage of algorithms to guarantee invehicle messages integrity
- Usage of cryptography algorithms to protect the vehicle from external threats

SYSTEMS

In-vehicle message protection

iı	nt MC_Calc(int MC_old){ int MC_new;
	if (MC_old == 15)
	MC_new = 0; }
	else {
	<pre>MC_new = MC_old + 1; }</pre>
}	<pre>return MC_new;</pre>

Cyclic Redundancy Check (CRC)

- non crypto

Guarantees the integrity of the message

- Message Counter (MC) and Alive Counter (AC)
 - non crypto

Guarantee the integrity of the sender

✓ Message bits $m(x)=m_{k-1}X^{k-1} + m_{k-2}X^{k-2} + ... + m_1X + m_0$ ✓ CRC bits

 $r(x)=r_{R-1}X^{R-1} + r_{R-2}X^{R-2} + \dots + r_1X + r_0$

✓ Generator polynomial $G(x)=g_RX^R + g_{R-1}X^{R-1} + ... + g_1X + g_0$

Modulo-2 division

 $X^{R}m(x)+r(x)=p(x)g(x)$

Cipher based Message Authentication Code (CMAC)
 – based on AES

Guarantees integrity of sender and message Guarantees authenticity of the sender

72C

SYSTEMS

ADA – Authenticated Diagnostic Access

- **Based on RSA**
- Usage:
 - Critical diagnosis can be accessed by authorized users only (ex. engineers, dealers etc.)
- **Protection for:**
 - Programming of the ECU (and FOTA/AOTA*)
 - Hard Reset of the FCU
 - Calibration changes
 - Parameters tampering (ex. total odometer)
 - Confidential engineering data
 - Hiding of malfunctioning

*Firmware Over the Air Application Over the Air

Algorithm	Algorithm Automotive Typical Usage		Algorithm Class	
AES-128	Immobilizer	> 2030	Symmetric Block Cipher	
SHA256	Code Integrity, Digital Signature	> 2030	Hash function	
CMAC (AES-128)	Message Authentication Authenticated Boot	> 2030	Message Authentication Code	
HMAC (SHA256)	Message Authentication Authenticated Boot	> 2030	Message Authentication Code	
RSA 2048	Authenticated Diagnostic Access	2030	Asymmetric Cipher Digital Signature	
RSA 3072 RSA 4096	Authenticated Diagnostic Access	> 2030	Asymmetric Cipher Digital Signature	
ECC 256	V2X applications: encryption and authentication	> 2030	Elliptic Curve Encryption Digital Signature	
DRBG_CTR (AES-128)	Authenticated Diagnostic Access, Security Access, Key generation	> 2030	Pseudo Random Number	

 Each use case needs a dedicated algorithms/method

 Actual strategies may not be safe enough in the next future

*National Institute of Standard and Technology

Optimization of HEV consumption

- Scope:
 - Finding optimal parameters for a real driving cycle
- Activities:
 - Finding optimum for homologation driving cycles
 - Finding optimum for real driving cycles
 - Finding optimum for Vehicle to City applications

Development and validation of the model

Embedding of developed model in the ECU and simulation of the rest of the vehicle

Data Collection on vehicle usage (V2C*)

- Scope:
 - Collect information about how the vehicle is used
 - Collect data of sold fleet
 - Foresee potential malfunctions

How:

- Store data in ECU's non-volatile memory
- Send data to Company cloud
- Produce statistics and metrics
- Define a strategy to highlight relevant data

*Vehicle to Cloud

Pure Power Control © 2008-2023

39

Pisa (Cascina) Headquarter
 Via Carbonia 8, 56023 Visignano – Cascina (PI), Italy
 Email: andrea@purepowercontrol.com
 Tel: +39 050 749012

Modena

Contacts

Via C. Zucchi 21, int. 13A, 41123 Modena (MO), Italy. Email: <u>luigi.dimarco@purepowercontrol.com</u>, <u>federico.mattioli@purepowercontrol.com</u> Tel:+39 059 2153755, +39 338 8747234

Terni (MICH)

Via L. Casale 7, 05100 Terni (TR), Italy.

Company Information

Registered Office: Via Carbonia 8, 56023 Visignano – Cascina (PI), Italy

Tax Code and VAT N. 02137760464

REA PI – 165427, MO-418086

